SET	A

INDIAN SCHOOL MUSCAT

FINAL EXAMINATION 2023
SUBJECT: PHYSICS (O42)
CLASS:XI
Max.Marks: 70

MARKING SCHEME			
SET	QN.NO	VALUE POINTS	MARKS
A	1	B	
	2	A	
	3	A	
	4	C	
	5	C	
	6	B	
	7	B	
	8	D	
	9	B	
	10	B	
	11	A	
	12	A	
	13	C	
	14	A, B OR C	
	15	B	
	16	A	
	17	D	
	18	A , B	
	19	DERIVATION of $v^{2}=u^{2}-2$ as GRAPH - Derivation OR (a) Velocity $=0$ Acceleration $=9.8 \mathrm{~m} / \mathrm{s}^{2}$ (downwards) Yes. Uniform circular motion	$\begin{aligned} & 1 / 2 \\ & 11 / 2 \\ & 1 / 2 \\ & 1 / 2 \\ & 1 / 2+1 / 2 \end{aligned}$
	20.	$\begin{aligned} & \text { Initial K.E. }=1 / 2 \mathrm{mu} 2=1000 \mathrm{~J} \\ & \text { Final K.E. }=100 \mathrm{~J} \\ & 1 / 2 \mathrm{mv}^{2}=100 \\ & \mathbf{V}=\mathbf{6 3 . 3 4} \mathbf{~ m} / \mathbf{s} \end{aligned}$	$\begin{aligned} & 1 / 2 \\ & 1 / 2 \\ & 1 / 2 \\ & 1 / 2 \end{aligned}$
	21.		$\begin{aligned} & 1 / 2 \\ & 1 / 2 \\ & 1 / 2 \\ & 1 / 2 \end{aligned}$

	Two equations according to law of conservation of energy and law of conservation of momentum, give 1 mark) $\begin{aligned} & \mathrm{V}_{1}=2 \mathrm{~m}_{2} \mathrm{u}_{2}+\mathrm{u}_{1}\left(\mathrm{~m}_{1}-\mathrm{m}_{2}\right) /\left(\mathrm{m}_{1}+\mathrm{m} 2\right) \\ & \mathrm{V}_{2}=2 \mathrm{~m}_{1} \mathrm{u} 1+\mathrm{u}_{2}\left(\mathrm{~m}_{2}-\mathrm{m}_{1}\right) /\left(\mathrm{m}_{1}+\mathrm{m} 2\right) \end{aligned}$	$\begin{aligned} & 1 \\ & 1 \\ & 1 / 2 \end{aligned}$
29.	Centre of mass: Centre of mass of a system or a body is a point where whole of mass of the system were supposed to be concentrated. Centre of mass of a system of two particles: Derivation Diagram $\mathbf{R}_{\text {c.m. }}=\left(\mathbf{m}_{1} \mathbf{r}_{1}+\mathbf{m}_{2} \mathbf{r}_{2}+\ldots \ldots .+\mathbf{m}_{\mathbf{n}} \mathbf{r}_{\mathbf{n}}\right) /\left(\mathbf{m}_{1}+\mathbf{m}_{2+\ldots \ldots .}+\mathbf{m}_{\mathbf{n}}\right)$ (If derivation is given upto net force in differential form, give $\mathbf{1}$ mark) (OR) Angular momentum: Angular momentum of a particle about an axis of rotation is defined as the product of linear momentum of the particle and the perpendicular distance of the particle from the axis of rotation. Derivation: Relationship between angular momentum and torque. $\tau=\mathrm{dL} / \mathrm{dt}$ (If physical quantities are not written in vector notation, deduct 1 mark)	$1 / 2$ $1 / 2$ 2 $1 / 2$ 1 1 2
30.	(a) List two characteristics of simple harmonic motion. (b) The displacement equation for a particle executing simple harmonic motion $y=10 \operatorname{Sin}(40 t+0.5)$. Where y is in centimeter and time in seconds (i) Amplitude $=10 \mathrm{~cm}$ (ii) Frequency $=6.3 \mathrm{~Hz}$ (iii) Phase $=0.5$	$\begin{aligned} & 1 / 2,1 / 2 \\ & \\ & 1 / 2 \\ & 1 \\ & 1 / 2 \\ & \hline \end{aligned}$
31.	(a) projectile definition: An object thrown with initial velocity and which is then allowed to move under the action of gravity alone is called projectile. Derivation for a maximum height $\quad H=u^{2} \sin ^{2} \theta / 2 g$ (b) Time of flight $\mathrm{T}=2 \mathrm{uSin} \theta / \mathrm{g}=2 \times 30 \times 0.5 / 9.8=3.06 \mathrm{sec}$ Horizontal range $=u 2 \operatorname{Sin} 2 \theta / g=77.85 \mathrm{~m}$. (OR) (a) Derivation for the path followed by a projectile is a parabolic path Diagram Derivation Justification of parabolic path (b) Actual velocity $=288.6 \mathrm{kmph}$ Vertical component of the velocity $=44.3 \mathrm{Kmph}$	1 2 $1 / 21 / 2$ $1 / 21 / 2$ 1 $11 / 2$ $1 / 2$ 1 1
32	(a) Orbital velocity: The velocity required to put a satellite into its orbit around the earth is called orbital velocity. Derivation for the orbital velocity of satellite in terms of g (b) $\begin{aligned} & g_{d}=g(1-d / R) \\ & m \cdot g_{d}=m \cdot g(1-d / R) \\ & \mathrm{Wd}=\mathrm{W}(1-\mathrm{d} / \mathrm{R}) \text { Substitution and calculation } \\ & =125 \mathrm{~N} \end{aligned}$ (OR) (a) Escape velocity: The minimum speed required to project a body vertically upward from the surface of earth so that it never returns to the surface of earth is escape velocity. Derivation for the escape velocity: $\quad \mathrm{Ve}=(2 \mathrm{gR})^{1 / 2}$ (b) Percentage decrease in weight of a body $=2 \mathrm{~h} / \mathrm{R} \times 100$	$\begin{aligned} & \hline 1 / 2 \\ & 21 / 2 \\ & 1 / 2 \\ & 1 / 2 \\ & 1 \\ & \\ & 1 \\ & \\ & 2 \\ & 1 / 2 \end{aligned}$

	$\begin{array}{ll} & =(2 \times 32 / 6400) \times 100 \\ =1 \% \end{array}$	$\begin{gathered} 1 / 2 \\ 1 \end{gathered}$
33.	(a) Statement of Bernoulli's theorem: (Per unit volume / mass is not given, give zero) Proof for Bernoulli's theorem: Diagram Derivation (b) $\mathrm{A}_{1}=8 \mathrm{~cm}^{2}=8 \times 10^{-4} \mathrm{~m}^{2}$ $\mathrm{V}_{1}=1.5 \mathrm{~m} / \text { minute }=\frac{1.5}{60} \mathrm{~ms}^{-1}$ Area of 40 holes $A_{2}=40 \pi\left(0.5 \times 10^{-3}\right)^{2} \mathrm{~m}^{2}$ $\begin{aligned} & \mathrm{A}_{1} \mathrm{~V}_{1}=\mathrm{A}_{2} \mathrm{~V}_{2} \\ & \mathrm{~V}_{2} \\ & =\frac{\mathrm{A}_{1} \mathrm{~V}_{1}}{\mathrm{~A}_{2}} \\ & \\ & \quad=\frac{8 \times 10^{-4} \times 1.5}{40 \pi \times\left(0.5 \times 10^{-3}\right)^{2} \times 60}=0.636 \mathrm{~ms}^{-1} ; \end{aligned}$ ($\overline{\mathbf{O}} \overline{\mathrm{R}}$) (a)Terminal velocity: When a body is dropped in a viscous fluid, it is first accelerated and then its acceleration becomes zero and it attains a constant velocity called terminal velocity. Derivation of expression for terminal velocity: $V=2 r^{2}(\rho-\sigma) g / 9 \eta$ If three acting forces are given with expression, give 1 mark) $\begin{gathered} \text { (b) } \mathrm{r}=1 \mathrm{~mm}, \mathrm{v}_{1}=5 \mathrm{~m} / \mathrm{s} \\ \mathrm{R}=2 \mathrm{~mm}, \\ \mathrm{v}_{2}=4 \times \mathrm{v}_{1}=4 \times 5=20 \mathrm{~m} / \mathrm{s} \end{gathered}$	1 $1 / 2$ $11 / 2$ $1 / 2$ $1 / 2$ $1 / 2$ $1 / 2$ 1 2 2
34.	(i) $\mu=0.5$ (ii) $\mu=0.5773$ (iii) Definition angle of friction. (OR) laws of limiting friction. (any two)	$\begin{aligned} & 1 \\ & 1 \\ & 2 \end{aligned}$
35.	(i) Pressure a scalar quantity because it same value in all direction at certain depth (ii) Height of air column, density of air and value of g (any two) (iii) passengers are advised to remove the ink from their pens while going up in plane because of less atmospheric pressure w.r.t high pressure in barrel of ink pen OR It is difficult to stop bleeding from a cut in human body at high altitudes because of less atmospheric pressure w.r.t high BP	$\begin{aligned} & 1 \\ & 1 / 21 / 2 \\ & 2 \end{aligned}$
	THE END	

SET	B

INDIAN SCHOOL MUSCAT
FINAL EXAMINATION 2023
SUBJECT: PHYSICS (O42)
CLASS:XI
Max.Marks: 70

MARKING SCHEME			
SET	QN.NO	VALUE POINTS	$\begin{aligned} & \text { MAR } \\ & \text { KS } \\ & \text { SPLIT } \\ & \text { UP } \end{aligned}$
A	1	A	1
	2	C	1
	3	B	1
	4	A	1
	5	C	1
	6	B	1
	7	B	1
	8	D	1
	9	B	1
	10	B	1
	11	A	1
	12	A B C	1
	13	B	1
	14	D	1
	15	B	1
	16	A	1
	17	D	1
	18	A B	1
	19	DERIVATION of $v^{2}-u^{2}=2 a s$ GRAPH - Derivation	$\begin{aligned} & 1 / 2 \\ & 1^{1 / 2} \end{aligned}$
	20.	$\begin{aligned} & \text { Initial K.E. }=1 / 2 \mathrm{mu} 2=1000 \mathrm{~J} \\ & \text { Final K.E. }=100 \mathrm{~J} \\ & 1 / 2 \mathrm{mv}^{2}=100 \\ & \mathbf{V}=\mathbf{6 3 . 3 4} \mathbf{~ m} / \mathbf{s} \end{aligned}$	$\begin{aligned} & 1 / 2 \\ & 1 / 2 \\ & 1 / 2 \\ & 1 / 2 \end{aligned}$
	21.	$\begin{gathered} \hline \text { Formula }-\quad g^{\prime}=g(1-\mathrm{d} / \mathrm{R}) \\ 1 \% \text { of } g=\mathrm{g}(1-\mathrm{d} / \mathrm{R}) \\ 1 / 100=1-\mathrm{d} / \mathrm{R} \\ \quad \mathrm{~d}=6336 \mathrm{~km} \end{gathered}$	$\begin{aligned} & 1 / 2 \\ & 1 / 2 \\ & 1 / 2 \\ & 1 / 2 \end{aligned}$

	22.	 (i) load extension graph (ii) labelling -(a) Hooke's law region (b) Elastic limit (c) Proportional limit (d) Breaking point OR (i) Increase in length is halved (ii) Maximum load it can support will remain the same	$4 \times 1 / 2$ $\begin{aligned} & 1 \\ & 1 \end{aligned}$
	23.	(a) Statement of Wein's displacement law (b)Water is used as a coolant in automobile radiators, as well as, a heater in hot water bag because high specific capacity of water.	1 1
	24.	Statement of the first law of thermodynamics and also Any two limitations. (OR) Any four difference between isothermal and adiabatic processes	$\begin{aligned} & \hline 1 \\ & 1 \\ & \\ & 4 \times 1 / 2 \end{aligned}$
	25.	Any Four postulates of kinetic theory of gases.	$4 \times 1 / 2$
	26.	$\mathrm{M} \alpha \mathrm{V}^{\mathrm{a}}$ $M \alpha \rho^{b}$ $M \alpha g^{c}$ $\mathrm{M} \alpha \mathrm{V}^{\mathrm{a}} \rho^{\mathrm{b}} \mathrm{g}^{\mathrm{c}}$ $\mathrm{ML}^{0} \mathrm{~T}^{0}=\left[\mathrm{LT}^{-1}\right]^{\mathrm{a}} .\left[\mathrm{ML}^{-3}\right]^{\mathrm{b}}\left[\mathrm{LT}^{-2}\right]^{\mathrm{c}}$ $a=6$ $\mathrm{b}=1$ $c=-3$ Showing $\mathrm{M} \alpha \mathrm{V}^{6}$ (OR) $\mathrm{T} \alpha \mathrm{r}^{\mathrm{a}}$ $\mathrm{T} \alpha \mathrm{M}^{\mathrm{b}}$ $\mathrm{T} \alpha \mathrm{G}^{\mathrm{c}}$. $\mathrm{T} \alpha \mathrm{r}^{\mathrm{a}} . \mathrm{M}^{\mathrm{b}} . \mathrm{G}^{\mathrm{c}}$. $\begin{gathered} \mathrm{M}^{0} \mathrm{~L}^{0} \mathrm{~T}^{1}=[\mathrm{L}]^{\mathrm{a}} \cdot[\mathrm{M}]^{\mathrm{b}}\left[\mathrm{M}^{-1} \mathrm{~L}^{3} \mathrm{~T}^{-2}\right]^{\mathrm{c}} \\ \mathrm{a}=3 / 2 \\ \mathrm{~b}=-1 / 2 \\ \mathrm{c}=-1 / 2 \end{gathered}$ Showing $T^{2} \alpha r^{3}$.	$\begin{aligned} & 1 \\ & 1 / 2 \\ & 1 / 2 \\ & 1 / 2 \\ & 1 / 2 \end{aligned}$ 1 $1 / 2$ $1 / 2$ $1 / 2$ $1 / 2$
	27.	Obtain an expression for the maximum speed with a vehicle can safely negotiate a curved road banked at an angle θ. Diagram: Derivation:(If two equations from FBD are correct, give 1 mark)	$\begin{aligned} & 1 \\ & 2 \\ & \hline \end{aligned}$

\begin{tabular}{|c|c|c|}
\hline 28. \& \begin{tabular}{l}
Elastic collision: A collision between two particles or bodies is said to be perfectly elastic if both the linear momentum and the kinetic energy of the system remains conserved. \\
Derivation for final velocities after 1-dimensional collision \\
Two equations according to law of conservation of energy and law of conservation of momentum, give 1 mark)
\[
\begin{aligned}
\& \mathrm{V}_{1}=2 \mathrm{~m}_{2} \mathrm{u}_{2}+\mathrm{u}_{1}\left(\mathrm{~m}_{1}-\mathrm{m}_{2}\right) /\left(\mathrm{m}_{1}+\mathrm{m} 2\right) \\
\& \mathrm{V}_{2}=2 \mathrm{~m}_{1} \mathrm{u} 1+\mathrm{u}_{2}\left(\mathrm{~m}_{2}-\mathrm{m}_{1}\right) /\left(\mathrm{m}_{1}+\mathrm{m} 2\right)
\end{aligned}
\]
\end{tabular} \& \(1 / 2\)

1
1
1
$1 / 2$

\hline 29. \& | Centre of mass: Centre of mass of a system or a body is a point where whole of mass of the system were supposed to be concentrated. |
| :--- |
| Centre of mass of a system of two particles: Derivation |
| Diagram $\mathbf{R}_{\text {c.m. }}=\left(\mathbf{m}_{1} \mathbf{r}_{1}+\mathbf{m}_{2} \mathbf{r}_{2}+\ldots \ldots+\mathbf{m}_{\mathbf{n}} \mathbf{r}_{\mathbf{n}}\right) /\left(\mathbf{m}_{1}+\mathbf{m}_{2+\ldots \ldots .}+\mathbf{m}_{\mathbf{n}}\right)$ |
| (If derivation is given upto net force in differential form, give 1 mark) |
| (OR) |
| Angular momentum: Angular momentum of a particle about an axis of rotation is defined as the product of linear momentum of the particle and the perpendicular distance of the particle from the axis of rotation. |
| Derivation: Relationship between angular momentum and torque. $\tau=\mathrm{dL} / \mathrm{dt}$ |
| (If physical quantities are not written in vector notation, deduct 1 mark) | \& $1 / 2$

$1 / 2$
2
$1 / 2$
1
1
2

\hline 30. \& | (a) List two characteristics of simple harmonic motion. |
| :--- |
| (b) The displacement equation for a particle executing simple harmonic motion $y=10 \operatorname{Sin}(40 t+0.5)$. Where y is in centimeter and time in seconds |
| (i) Amplitude $=10 \mathrm{~cm}$ |
| (ii) Frequency $=6.3 \mathrm{~Hz}$ |
| (iii) Phase $=0.5$ | \& \[

$$
\begin{aligned}
& 1 / 2,1 / 2 \\
& \\
& 1 / 2 \\
& 1 \\
& 1 / 2 \\
& \hline
\end{aligned}
$$
\]

\hline 31. \& | (a) projectile definition: |
| :--- |
| An object thrown with initial velocity and which is then allowed to move under the action of gravity alone is called projectile. |
| Derivation for a maximum height $\quad H=u^{2} \sin ^{2} \theta / 2 g$ |
| (b) Time of flight $\mathrm{T}=2 \mathrm{uSin} \theta / \mathrm{g}=2 \times 30 \times 0.5 / 9.8=3.06 \mathrm{sec}$ |
| Horizontal range $=u 2 \operatorname{Sin} 2 \theta / g=77.85 \mathrm{~m}$. |
| (OR) |
| (a) Derivation for the path followed by a projectile is a parabolic path |
| Diagram |
| Derivation |
| Justification of parabolic path |
| (b) Actual velocity $=288.6 \mathrm{kmph}$ |
| Vertical component of the velocity $=144.3 \mathrm{Kmph}$ | \& | 1 |
| :--- |
| 2 |
| $1 / 21 / 2$ |
| $1 / 21 / 2$ |
| 1 |
| $11 / 2$ |
| $1 / 2$ |
| 1 |
| 1 |

\hline 32 \& | (a) Orbital velocity: The velocity required to put a satellite into its orbit around the earth is called orbital velocity. |
| :--- |
| Derivation for the orbital velocity of satellite in terms of g |
| (b) $\begin{gathered} g_{d}=g(1-d / R) \\ m \cdot g_{d}=\mathrm{m} \cdot g(1-\mathrm{d} / \mathrm{R}) \\ \mathrm{Wd}=\mathrm{W}(1-\mathrm{d} / \mathrm{R}) \text { Substitution and calculation } \\ =125 \mathrm{~N} \end{gathered}$ |
| (OR) | \& \[

$$
\begin{aligned}
& 1 / 2 \\
& 2^{1 / 2} \\
& 1 / 2 \\
& 1 / 2 \\
& \\
& 1
\end{aligned}
$$
\]

\hline
\end{tabular}

	(a) Escape velocity: The minimum speed required to project a body vertically upward from the surface of earth so that it never returns to the surface of earth is escape velocity. Derivation for the escape velocity: $\quad \mathrm{Ve}=(2 \mathrm{gR})^{1 / 2}$ (b) Percentage decrease in weight of a body $=2 \mathrm{~h} / \mathrm{R} \times 100$ $\begin{aligned} & =(2 \times 32 / 6400) \times 100 \\ & =1 \% \end{aligned}$	1 2 $1 / 2$ $1 / 2$ 1
33.	(a) Statement of Bernoulli's theorem: (Per unit volume / mass is not given, give zero) Proof for Bernoulli's theorem: Diagram Derivation (b) $\mathrm{A}_{1}=8 \mathrm{~cm}^{2}=8 \times 10^{-4} \mathrm{~m}^{2}$ $\mathrm{V}_{1}=1.5 \mathrm{~m} / \text { minute }=\frac{1.5}{60} \mathrm{~ms}^{-1}$ Area of 40 holes $A_{2}=40 \pi\left(0.5 \times 10^{-3}\right)^{2} \mathrm{~m}^{2}$ ($\overline{\mathbf{O}} \overline{\mathbf{R}}$) (a)Terminal velocity: When a body is dropped in a viscous fluid, it is first accelerated and then its acceleration becomes zero and it attains a constant velocity called terminal velocity. Derivation of expression for terminal velocity: $V=2 r^{2}(\rho-\sigma) g / 9 \eta$ If three acting forces are given with expression, give 1 mark) (b) $\mathrm{r}=1 \mathrm{~mm}, \mathrm{v}_{1}=5 \mathrm{~m} / \mathrm{s}$ $\begin{aligned} & \mathrm{R}=2 \mathrm{~mm}, \\ & \mathrm{v}_{2}=4 \times \mathrm{v}_{1}=4 \times 5=20 \mathrm{~m} / \mathrm{s} \end{aligned}$	1 $1 / 2$ $11 / 2$ $1 / 2$ $1 / 2$ $1 / 2$ $1 / 2$ 1 2 2
34.	(i) $\mu=0.5$ (ii) $\mu=0.5773$ (iii) Definition angle of friction. laws of limiting friction. (any two)	$\begin{aligned} & 1 \\ & 1 \\ & 2 \end{aligned}$
35.	(i) Pressure a scalar quantity because it same value in all direction at certain depth (ii) Height of air column, density of air and value of g (any two) (iii) passengers are advised to remove the ink from their pens while going up in plane because of less atmospheric pressure w.r.t high pressure in barrel of ink pen OR It is difficult to stop bleeding from a cut in human body at high altitudes because of less atmospheric pressure w.r.t high BP	$\begin{aligned} & 1 \\ & 1 / 21 / 2 \\ & 2 \end{aligned}$
	THE END	

SET	C

INDIAN SCHOOL MUSCAT

FINAL EXAMINATION 2023
SUBJECT: PHYSICS (O42)
CLASS:XI
Max.Marks: 70

MARKING SCHEME			
SET	QN.NO	VALUE POINTS	MARKS
A	1	A	
	2	A	
	3	B	
	4	C	
	5	C	
	6	B	
	7	C	
	8	D	
	9	B	
	10	B	
	11	A, B AND C	
	12	A	
	13	C	
	14	A	
	15	B	
	16	A	
	17	D	
	18	A B	
	19	DERIVATION of $\mathrm{v}^{2}=\mathrm{u}^{2}-2$ as GRAPH - Derivation OR (a) Velocity $=0$ Acceleration $=9.8 \mathrm{~m} / \mathrm{s}^{2}$ (downwards) Yes. Uniform circular motion	$\begin{aligned} & 1 / 2 \\ & 11 / 2 \\ & 1 / 2 \\ & 1 / 2 \\ & 1 / 2+1 / 2 \end{aligned}$
	20.	$\begin{aligned} & \text { Initial K.E. }=1 / 2 \mathrm{mu} 2=1000 \mathrm{~J} \\ & \text { Final K.E. }=100 \mathrm{~J} \\ & 1 / 2 \mathrm{mv}^{2}=100 \\ & \mathbf{V}=\mathbf{6 3 . 3 4} \mathbf{~ m} / \mathbf{s} \end{aligned}$	$\begin{aligned} & 1 / 2 \\ & 1 / 2 \\ & 1 / 2 \\ & 1 / 2 \end{aligned}$
	21.	$\begin{gathered} \text { Formula }-\quad \begin{aligned} & \mathrm{g}=\mathrm{g} /(1-\mathrm{h} / \mathrm{R})^{2} \\ & \mathrm{mg}=\mathrm{mg} /(1-\mathrm{h} / \mathrm{R})^{2} \\ & \mathrm{~W}_{\mathrm{h}}=63 / /(1-(\mathrm{h} / 2) / \mathrm{R})^{2} \\ &=28 \mathrm{~N} \end{aligned} \\ \end{gathered}$	$\begin{aligned} & 1 / 2 \\ & 1 / 2 \\ & 1 / 2 \\ & 1 / 2 \end{aligned}$

	22.	 i) load extension graph (ii) labelling -(a) Hooke's law region (b) Elastic limit (c) Proportional limit (d) Breaking point OR (i) Increase in length is halved (ii) Maximum load it can support will remain the same	$4 \times 1 / 2$ $\begin{aligned} & 1 \\ & 1 \end{aligned}$
	23.	(a) Statement of Wein's displacement law (b)Water is used as a coolant in automobile radiators, as well as, a heater in hot water bag because high specific capacity of water.	1 1
	24.	Statement of the first law of thermodynamics and also Any two limitations. (OR) Any four difference between isothermal and adiabatic processes	$\begin{array}{\|l\|} \hline 1 \\ 1 / 21 / 2 \\ 4 x^{1 / 2} \\ \hline \end{array}$
	25.	Any Four postulates of kinetic theory of gases.	$4 \times 1 / 2$
	26.	$\begin{aligned} & \mathrm{M} \alpha \mathrm{~V}^{\mathrm{a}} \\ & \mathrm{M} \alpha \rho^{\mathrm{b}} \\ & \mathrm{M} \alpha \mathrm{~g}^{\mathrm{c}} \\ & \mathrm{M} \alpha \mathrm{~V}^{\mathrm{a}} \rho^{\mathrm{b}} \mathrm{~g}^{\mathrm{c}} \\ & \mathrm{ML} \mathrm{~L}^{0} \mathrm{~T}^{0}=\left[\mathrm{LT}^{-1}\right]^{\mathrm{a}} \cdot\left[\mathrm{ML}^{-3}\right]^{\mathrm{b}}\left[\mathrm{LT}^{-2}\right]^{\mathrm{c}} \\ & \\ & \quad \mathrm{a}=6 \\ & \\ & \quad \mathrm{~b}=1 \\ & \\ & \quad \mathrm{c}=-3 \end{aligned}$ Showing $\mathrm{M} \alpha \mathrm{V}^{6}$ (OR) $\mathrm{T} \alpha \mathrm{r}^{\mathrm{a}}$ $\mathrm{T} \alpha \mathrm{M}^{\mathrm{b}}$ $\mathrm{T} \alpha \mathrm{G}^{\mathrm{c}}$. $\mathrm{T} \propto \mathrm{r}^{\mathrm{a}} \cdot \mathrm{M}^{\mathrm{b}} \cdot \mathrm{G}^{\mathrm{c}}$. $\begin{gathered} \mathrm{M}^{0} \mathrm{~L}^{0} \mathrm{~T}^{1}=[\mathrm{L}]^{\mathrm{a}} \cdot[\mathrm{M}]^{\mathrm{b}}\left[\mathrm{M}^{-1} \mathrm{~L}^{3} \mathrm{~T}^{-2}\right]^{\mathrm{c}} \\ \mathrm{a}=3 / 2 \\ \mathrm{~b}=-1 / 2 \\ \mathrm{c}=-1 / 2 \end{gathered}$ Showing $T^{2} \alpha r^{3}$.	$\begin{aligned} & 1 \\ & 1 / 2 \\ & 1 / 2 \\ & 1 / 2 \\ & 1 / 2 \end{aligned}$ 1 $1 / 2$ $1 / 2$ $1 / 2$ $1 / 2$
	27.	Obtain an expression for speed with a vehicle can safely negotiate a curved FLAT road Diagram: Derivation: (If two equations from FBD are correct, give 1 mark)	$\begin{aligned} & 1 \\ & 2 \\ & \hline \end{aligned}$

\begin{tabular}{|c|c|c|}
\hline 28. \& \begin{tabular}{l}
Elastic collision: A collision between two particles or bodies is said to be perfectly elastic if both the linear momentum and the kinetic energy of the system remains conserved. \\
Derivation for final velocities after 1-dimensional collision \\
Two equations according to law of conservation of energy and law of conservation of momentum, give 1 mark)
\[
\begin{aligned}
\& \mathrm{V}_{1}=2 \mathrm{~m}_{2} \mathrm{u}_{2}+\mathrm{u}_{1}\left(\mathrm{~m}_{1}-\mathrm{m}_{2}\right) /\left(\mathrm{m}_{1}+\mathrm{m} 2\right) \\
\& \mathrm{V}_{2}=2 \mathrm{~m}_{1} \mathrm{u} 1+\mathrm{u}_{2}\left(\mathrm{~m}_{2}-\mathrm{m}_{1}\right) /\left(\mathrm{m}_{1}+\mathrm{m} 2\right)
\end{aligned}
\]
\end{tabular} \& \begin{tabular}{l}
\[
1 / 2
\] \\
1
\[
\begin{array}{|l|}
\hline 1 \\
1 / 2 \\
\hline
\end{array}
\]
\end{tabular} \\
\hline 29. \& \begin{tabular}{l}
Centre of mass: Centre of mass of a system or a body is a point where whole of mass of the system were supposed to be concentrated. \\
Centre of mass of a system of two particles: Derivation \\
Diagram
\[
\mathbf{R}_{\text {c. } . \mathrm{m} .}=\left(\mathbf{m}_{1} \mathbf{r}_{1}+\mathbf{m}_{2} \mathbf{r}_{2}+\ldots \ldots .+\mathbf{m}_{\mathbf{n}} \mathbf{r}_{\mathbf{n}}\right) /\left(\mathbf{m}_{1}+\mathbf{m}_{2+\ldots \ldots .}+\mathbf{m}_{\mathbf{n}}\right)
\] \\
(If derivation is given upto net force in differential form, give 1 mark) \\
(OR) \\
Angular momentum: Angular momentum of a particle about an axis of rotation is defined as the product of linear momentum of the particle and the perpendicular distance of the particle from the axis of rotation. \\
Derivation: Relationship between angular momentum and torque.
\[
\tau=\mathrm{dL} / \mathrm{dt}
\] \\
(If physical quantities are not written in vector notation, deduct 1 mark)
\end{tabular} \& \(1 / 2\)
\(1 / 2\)
2

$1 / 2$
1
1

\hline 30. \& | (a) List two characteristics of simple harmonic motion. |
| :--- |
| (b) The displacement equation for a particle executing simple harmonic motion $y=10 \operatorname{Sin}(40 t+0.5)$. Where y is in centimeter and time in seconds |
| (i) Amplitude $=10 \mathrm{~cm}$ |
| (ii) Frequency $=6.3 \mathrm{~Hz}$ |
| (iii) Phase $=0.5$ | \& \[

$$
\begin{array}{|l|}
\hline 1 / 2,1 / 2 \\
\\
1 / 2 \\
1 \\
1 / 2 \\
\hline
\end{array}
$$
\]

\hline 31. \& | (a) projectile definition: |
| :--- |
| An object thrown with initial velocity and which is then allowed to move under the action of gravity alone is called projectile. |
| Derivation for a maximum height $\quad H=u^{2} \sin ^{2} \theta / 2 g$ |
| (b) Time of flight $\mathrm{T}=2 \mathrm{uSin} \theta / \mathrm{g}=2 \times 30 \times 0.5 / 9.8=3.06 \mathrm{sec}$ |
| Horizontal range $=u 2 \operatorname{Sin} 2 \theta / g=77.85 \mathrm{~m}$. |
| (OR) |
| (a) Derivation for the path followed by a projectile is a parabolic path |
| Diagram |
| Derivation |
| Justification of parabolic path |
| (b) Actual velocity $=288.6 \mathrm{kmph}$ |
| Vertical component of the velocity $=144.3 \mathrm{Kmph}$ | \& \[

$$
\begin{array}{|l}
\hline 1 \\
\\
2 \\
\\
1 / 21 / 2 \\
11 / 21 / 2 \\
\\
1 \\
11 / 2 \\
1 / 2 \\
1 / 2 \\
1 \\
1 \\
\hline
\end{array}
$$
\]

\hline 32 \& | (a) Orbital velocity: The velocity required to put a satellite into its orbit around the earth is called orbital velocity. |
| :--- |
| Derivation for the orbital velocity of satellite in terms of g |
| (b) $\begin{gathered} \mathrm{g}_{\mathrm{d}}=\mathrm{g}(1-\mathrm{d} / \mathrm{R}) \\ \mathrm{m} \cdot \mathrm{~g}_{\mathrm{d}}=\mathrm{m} \cdot \mathrm{~g}(1-\mathrm{d} / \mathrm{R}) \\ \mathrm{Wd}=\mathrm{W}(1-\mathrm{d} / \mathrm{R}) \text { Substitution and calculation } \\ =125 \mathrm{~N} \end{gathered}$ | \& \[

$$
\begin{aligned}
& \hline 1 / 2 \\
& 21 / 2 \\
& 1 / 2 \\
& 1 / 2 \\
& 1 \\
& 1
\end{aligned}
$$
\]

\hline
\end{tabular}

	(OR) (a) Escape velocity: The minimum speed required to project a body vertically upward from the surface of earth so that it never returns to the surface of earth is escape velocity. Derivation for the escape velocity: $\quad \mathrm{Ve}=(2 \mathrm{gR})^{1 / 2}$ (b) Percentage decrease in weight of a body $=2 h / R \times 100$ $=1 \% \text { =(2x32/6400) } \times 100$	$\begin{aligned} & \hline 1 \\ & 2 \\ & 1 / 2 \\ & 1 / 2 \\ & 1 \end{aligned}$
33.	(a) Statement of Bernoulli's theorem: (Per unit volume / mass is not given, give zero) Proof for Bernoulli's theorem: Diagram Derivation (b) $\mathrm{A}_{1}=8 \mathrm{~cm}^{2}=8 \times 10^{-4} \mathrm{~m}^{2}$ $\mathrm{V}_{1}=1.5 \mathrm{~m} / \text { minute }=\frac{1.5}{60} \mathrm{~ms}^{-1}$ Area of 40 holes $\mathrm{A}_{2}=40 \pi\left(0.5 \times 10^{-3}\right)^{2} \mathrm{~m}^{2}$ $(\overline{\mathbf{O}} \overline{\mathbf{R}})$ (a)Terminal velocity: When a body is dropped in a viscous fluid, it is first accelerated and then its acceleration becomes zero and it attains a constant velocity called terminal velocity. Derivation of expression for terminal velocity: $V=2 r^{2}(\rho-\sigma) g / 9 \eta$ If three acting forces are given with expression, give 1 mark) $\begin{gathered} \text { (b) } \mathrm{r}=1 \mathrm{~mm}, \mathrm{v}_{1}=5 \mathrm{~m} / \mathrm{s} \\ \mathrm{R}=2 \mathrm{~mm}, \\ \mathrm{v}_{2}=4 \times \mathrm{v}_{1}=4 \times 5=20 \mathrm{~m} / \mathrm{s} \end{gathered}$	1 $1 / 2$ $11 / 2$ $1 / 2$ $1 / 2$ $1 / 2$ $1 / 2$ 1 2 2
34.	(i) $\mu=0.5$ (ii) $\mu=0.5773$ (iii) Definition angle of friction. (OR) laws of limiting friction. (any two)	$\begin{aligned} & 1 \\ & 1 \\ & 2 \end{aligned}$
35.	(i) Pressure a scalar quantity because it same value in all direction at certain depth (ii) Height of air column, density of air and value of g (any two) (iii) passengers are advised to remove the ink from their pens while going up in plane because of less atmospheric pressure w.r.t high pressure in barrel of ink pen OR It is difficult to stop bleeding from a cut in human body at high altitudes because of less atmospheric pressure w.r.t high BP	$\begin{aligned} & \hline 1 \\ & 1 / 21 / 2 \\ & 2 \end{aligned}$
	THE END	

